
Journal of Magnetic Resonance 207 (2010) 17–23
Contents lists available at ScienceDirect

Journal of Magnetic Resonance

journal homepage: www.elsevier .com/locate / jmr
Filter diagonalization using a ‘‘sensitivity-enhanced basis”: Improved performance
for noisy NMR spectra

Hasan Celik 1, A.J. Shaka ⇑
Department of Chemistry, University of California, Irvine, CA 92697-2025, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 2 April 2010
Revised 17 July 2010
Available online 7 August 2010

Keywords:
Filter diagonalization
Noise
Generalized eigenvalue problem
Data fitting
2D NMR
Resolution enhancement
Sensitivity
1090-7807/$ - see front matter � 2010 Elsevier Inc. A
doi:10.1016/j.jmr.2010.07.019

⇑ Corresponding author. Fax: +1 949 821 9920.
E-mail addresses: hcelik@uci.edu (H. Celik), ajshak

1 Fax: +1 949 821 9920.
The Filter Diagonalization Method (FDM) has been used to process NMR data in liquids and can be advan-
tageous when the spectrum is sparse enough, the lines are sharp and Lorentzian, raw sensitivity is ade-
quate, and the measured time-domain data is short, so that the Fourier Transform spectrum exhibits
distorted line shapes. Noise can adversely impact resolution and/or frequency accuracy in FDM spectral
estimates. Paradoxically, more complete data can lead to worse FDM spectra if there is appreciable noise.
However, by modifying the numerical method, the FDM noise performance improves significantly, with-
out apparently losing any of the existing advantages. The two key modifications are to adjust the FDM
basis functions so that matrix elements computed from them have less noise contribution on average,
and to regularize each dimension of a multidimensional spectrum independently. The modifications can
be recommended for general-purpose use in the case of somewhat noisy, incomplete data.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction resonances are well modeled by this form, FDM expedites data col-
Introduced by Wall and Neuhauser in 1995 [1], the Filter Diag-
onalization Method (FDM) is a general way to fit a signal C(ns) re-
corded on a regular time grid as a linear superposition of complex
sinusoids (Eq. (1).

CðnsÞ ¼
XK

k¼1

dkeinxks; n ¼ 0; . . . ;2M � 1; ð1Þ

xk ¼ 2pfk þ ick: ð2Þ

It was refined [2] and improved [3], but the core of FDM has re-
mained mostly unchanged. Although originally designed to treat
neither spectroscopic nor multidimensional data, FDM was adapted
to process NMR spectra of both large and small molecules in liquids
in 1D [4], 2D [5–7], 3D [8,9], and 4D [10] spectra, with the multidi-
mensional cases requiring important modifications [6]. FDM out-
performed the discrete Fourier Transform (DFT) whenever
sensitivity was good, the spectrum was sufficiently sparse, the lines
were sharp and Lorentzian, and the extent of the measured time-
domain data was short, so that the FT spectrum exhibited line
shapes that were distorted by convolution with a sinc-function. If
the desired NMR spectrum can be cast efficiently as a linear combi-
nation of Lorentzian peaks with variable position and width (xk),
and amplitude and phase (dk), FDM should be efficient. As NMR
ll rights reserved.
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lection whenever spectra have sharp lines and little noise. Unfortu-
nately, the fidelity of the FDM spectral estimate degrades as the
noise level increases. Noise is not captured by a small number of
Lorentzian peaks, so a decaying signal may not improve the spectral
estimate at all, instead introducing spurious ‘‘peaks”. More data
points may also degrade the accuracy of the parameters describing
the desired signal peaks, making it advantageous in some cases to
truncate the time signal artificially. The tipping point can be well
before the free-induction decay (FID) has visually fallen into the
noise, and 2D or higher spectra are more delicate. In fact, FDM
was used primarily for constant-time (CT) spectra where no signal
decay occurred except in the directly-detected (running-time)
dimension. These spectra gave superior results compared to the
real-time multidimensional spectra [7–10]. By contrast, FT spectra
almost always benefit from a longer signal as long as the signal
has not decayed into the noise. Noise appears as low amplitude
incoherent features that are only rarely misinterpreted as true
resonances.

The sensitivity of the FDM spectral estimate to the data length
adds unwelcome complexity to the method: one should try differ-
ent data lengths, compute the spectrum, and then try to hone in on
the optimum length to use. This optimization is open to bias. In 2D
applications, where data sets may be highly asymmetrical (long in
F2 and short in F1), artificially shortening the data used in F2, to
compensate for sensitivity to noise, can lower resolution in F2 even
as the resolution improves in F1. As the signal-to-noise ratio (SNR)
of a 2D time signal C(t1, t2) degrades rapidly as t1 increases [11], the
overall contribution of noise can result in artifactual peaks or loss
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of resolution in F2, depending on the degree of regularization (see
below) employed. It would thus be desirable to reformulate FDM
so the results are less degraded by noise for complete data, but still
show superior resolution for incomplete data. In this way, essen-
tially all the data can be used each time, and just one calculation
conducted. We present a way to move toward this goal.

2. Theory

2.1. The sensitivity-enhanced basis

Given an N-point 1D time signal, the solution to Eq. (1) is ob-
tained by representing the time domain signal as a discrete time
autocorrelation function2:

cn ¼ ðU0jbUnjU0Þ; ð3Þ

so that extracting the eigenvalues and eigenvectors of bU solves Eq.
(1) [2]. No explicit information about the ‘‘Hamiltonian” of this fic-
titious system, nor its ‘‘initial state” U0, is required [1] to obtain a
numerical solution if a matrix representation of the time evolution
operator bU is available in some basis. The matrix elements Unm can
be expressed by constructing an iterative basis from U0:

jU1Þ ¼ bU jU0Þ; jU2Þ ¼ bU jU1Þ ¼ bU2jU0Þ; . . . ;

jUnÞ ¼ bUnjU0Þ; n ¼ 0;1;2; . . . ;M � 1; M ¼ N=2: ð4Þ

Assuming Eq. (3) is satisfied, the matrix elements of bUp in this basis
are simply the measured data shifted forward by p time steps:

UðpÞnm ¼ ðUnjbUpjUmÞ ¼ ðU0jbUnþmþpjU0Þ ¼ cnþmþp ð5Þ

which gives a generalized eigenvalue problem

Uð1ÞBk ¼ ukUð0ÞBk ð6Þ

as the way to fit the data. Unfortunately, the size of these matrices is
absolutely huge for most data sets [2], making this approach
impractical. Changing to a Fourier basis [1,2],

jWjÞ ¼
XM�1

n¼0

e�2pinsfj jUnÞ; ð7Þ

allows a far more efficient divide-and-conquer strategy [2,12]
where localized eigenvalues can be extracted in a frequency ‘‘win-
dow” of interest, fmin < fj < fmin + Df and Df� 1/s = SW where SW is
the full spectral width. The matrix elements ðWj0 jbUpjWjÞ in the Fou-
rier basis can be evaluated straightforwardly

UðpÞ
j0j
¼ ðWj0 jbUpjWjÞ ¼

XM�1

m¼0

XM�1

n¼0

e�2pimsfj0 e�2pinsfj ðUmjbUpjUnÞ

¼
XM�1

m¼0

XM�1

n¼0

z�m
j0 z�n

j cnþmþp; zj ¼ eð2pifjsÞ ð8Þ

and were simplified by rearranging Eq. (8) and then analytically
evaluating the sums [2,12], giving

UðpÞ
j0 j
¼ 1

zj � zj0

� zj

XM�1

l¼0

z�l
j0 clþp � zj0

XM�1

l¼0

z�l
j clþp � z�ðM�1Þ

j

X2M�2

l¼M

z�l
j0 clþp þ z�ðM�1Þ

j0

X2M�2

l¼M

z�l
j clþp

 !
� zj– zj0 ð9Þ

UðpÞjj ¼
X2M�2

l¼0

ðM � jM � l� 1jÞz�l
j clþp; zj ¼ zj0 : ð10Þ
2 The inner product is complex symmetric rather than Hermitian, hence the use of
rounded parentheses rather than the more common Dirac bra-ket notation.
Aside from the numerical efficiency, Eq. (10) also clarifies the nature
of the matrix elements showing that for p = 0 or 1 they amount to
an (N � 1)-point FT of the data with a severe triangular weighting
function that peaks in the midpoint of time domain. The informa-
tion content of the data points cn is thus apparently emphasized
in a rather undemocratic way in the matrices used to fit the data,
with the center points contributing most to the matrix elements,
while the first and last points contribute hardly at all. This triangu-
lar weighting follows on inexorably as a consequence of how the
matrix elements in the Fourier basis are tied to the measured data
points. As more data is collected, the weighting also becomes rela-
tively more severe. This apparent emphasis has no consequence in
the case of a noiseless model signal, where quantitative results are
invariably obtained to many digits of accuracy. But because the
midpoint will usually have reduced SNR for any decaying experi-
mental noisy signal, the consequence for longer experimental sig-
nals with finite SNR may be quite different. The presence of noise
becomes especially problematic when real-time evolution periods
are used in multidimensional NMR [13]. The triangular weighting
harks back to the ‘‘pseudo-echo” function used to convert abso-
lute-value NMR line shapes into absorption-like line shapes, albeit
with a heavy sensitivity penalty [14]. Formulas analogous to Eq.
(10) exist for 2D, 3D, 4D, etc. cases [12,15], where the triangular
weighting of the data points is independently applied in each
dimension, giving a highly-peaked direct product weighting in the
matrix elements between nD Fourier type basis functions [2].
Clearly, the nD midpoint of all the data may not be the best choice
to emphasize unless the data is short in all dimensions, in which
case the weighting is less severe and has not decayed much.

Careful experimental study of this noise sensitivity, in conjunc-
tion with a more formal theoretical analysis of some simpler cases
[16] has led us to the conclusion that it is nearly always a problem
whenever multidimensional data sets are sampled, in more than
one dimension, to times of the order of the inverse line width,
i.e. for data sets with more than one dimension with decent digital
resolution. Luckily, early FT NMR papers suggest a work around.
Natural abundance 13C NMR suffers from reduced sensitivity but
improved resolution compared with 1H. Thus, since the earliest
days of FT NMR, a matched exponentially decaying function has
been routinely applied to 13C FIDs before Fourier transformation
to optimize sensitivity at the expense of resolution. The same could
be done to the raw FIDs submitted to FDM analysis, if the resultant
line broadening were acceptable. However, the idea behind FDM is
to improve the resolution, and broadening the lines defeats its rai-
son d’être as broad lines are handled perfectly in FT spectra. A bet-
ter strategy therefore is to weight the basis rather than the data,

jvðf ; cÞÞ ¼
XM�1

n¼0

e�nsce�2ipnsf jUnÞ: ð11Þ

Weighting the basis will not change final computed line widths
appreciably, as the actual underlying data remains unchanged. In-
deed, in a hypothetical single-window calculation encompassing
the entire spectral width, the FDM result, in exact arithmetic,
should be invariant to any rank-preserving linear transformation
of the basis {Un}. Linear combinations of the basis functions are
used by the diagonalization routine to obtain the eigenfunctions,
and hence forming other linear combinations up front has no effect.
By contrast, in a limited window the basis is incomplete, and incor-
porating different weighting can improve the final results. What ba-
sis weighting can do, in particular, is to partially compensate for the
potential noise amplification discussed above. While it is not possi-
ble to achieve equal representation of each and every data point in
the resultant matrix elements, it is possible to compensate for the
very large emphasis of the central part of the data, the amount of
compensation being chosen in accord with the intrinsic SNR of
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the data set. An exponential weighting of the Un can be accom-
plished with the least change to the efficient formulas Eqs. (9)
and (10), making it a good first choice. Including a small imaginary
part to the frequency, 2pf ? 2pf � ic gives Eq. (11), accomplishing
the weighting. Note that the sensitivity of the computed spectrum
to errors in the input data varies non-uniformly in related methods
like linear prediction, and may also become an issue in other
non-linear methods that try to circumvent the time-frequency
uncertainty principle. We will explore these issues in a more
comprehensive investigation of noise sensitivity in future.

For now, the treatment in Eq. (11) was applied to each dimen-
sion of a 2D experiment, and the value of c chosen, for example,
so that the midpoint of the data was weighted equally to the first
point. This seems to be a reasonable choice for many data sets
we examined, especially when the time dimension in question
was sampled so that appreciable decay of the signal occurred. In
a very short dimension, in which the SNR of each increment was
similar, the weighting need not be this severe. The effect of c is
shown in Fig. 1. The weighting deemphasized the noisier portions,
and thus suggesting the name sensitivity-enhanced basis. Note,
however, that the actual profile still emphasizes data points be-
yond the first one, because the result of the double sum is more
complex than a simple weighting of an FID.

2.2. Variable regularization for multidimensional spectra

For nD NMR spectra the naive application of FDM using an nD
Fourier basis led to large noise-like spikes and other irregularities
and artifacts [6]. By modifying the generalized eigenvalue problem

Uð1Þl Blk ¼ ulkUð0ÞBlk ð12Þ

to

Uð0ÞyUð1Þl Blk ¼ ulkfUð0ÞyUð0Þ þ q2gBlk; l ¼ 1;2 . . . ð13Þ

with the parameter q2 assuring that the right-hand matrix is non-
singular, far better results were obtained [6]. Regularization is a
blunt instrument and the minimum amount that avoids artifactual
peaks is to be preferred. Its effect on isolated features is primarily to
broaden small peaks in a non-linear way while leaving the peak
integral nearly constant. In more complex spectra, strong regulari-
zation can lead to nearby peaks coalescing into simpler features
and hence significant potential loss of information. Whenever q2

is on the order of the peak integral, the peak is smoothed into a
broad baseline feature. A proper adjustment of q2 resulted in FDM
spectra with negligible artifacts while stronger peaks were widened
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Fig. 1. A plot comparing the relative contribution of data point cn to the diagonal
matrix elements of the U(0) matrix in the case of 1D time signal with 512 data
points. The right hand scale refers to unmodified Fourier basis, and the left hand
scale refers to a weighted basis in which c has been chosen to give equal weighting
to the midpoint relative to the first point.
to some extent. By processing a ‘‘blank” spectral region and ensur-
ing that no large artifacts were produced in the spectral estimate,
or, more conservatively, that all eigenvalues lay within the unit cir-
cle in the complex plane, an approximate value of the regularization
parameter could be obtained.

Note that the right-hand matrix in Eq. (13) is independent of the
particular dimension l under analysis. To the extent that regulari-
zation was meant only to correct defects in U(0), the amount of reg-
ularization needed would not seem to depend on the dimension l,
and in all published FDM spectra q2 was independent of l. However,
this was an oversimplification, and it seems that each dimension
benefits from individual treatment, i.e.

Uð0ÞyUð1ÞBlk
l ¼ ulkfUð0ÞyUð0Þ þ q2

l gBlk; l ¼ 1;2 . . . ð14Þ

This subtlety emerged when considering highly asymmetric 2D
data sets with few points in t1 but many points in t2. The sensitiv-
ity-enhanced basis, by mitigating the effect of noise, allowed less
total regularization to be employed and in turn led to the discovery
that each dimension should be regularized independently for best
performance. The new method maintained high resolution in each
dimension without any obvious trade-off as more data was gath-
ered. The prior implementations of FDM did not perform in this
way: the most stable results for moderately noisy data were ob-
tained often when fine multiplet structure in the long dimension
was collapsed completely by rather aggressive regularization, then
allowing significant line-narrowing in the indirect dimension. The
sensitivity-enhanced basis better preserves fine multiplet structure
(see Results section). While the extent of regularization was dimen-
sion dependent, it should not be window dependent. The FDM spec-
tral estimate, obtained by a series of frequency windows with 50%
overlap and smoothly summed [8], meant that broadening lines dif-
ferently in two adjacent windows could lead to a confusing super-
position of wide and narrow peaks in the final spectral estimate,
and was avoided.

Dimension-dependent regularization could be time consuming
without a reasonable guess for ql. A useful general method, pro-
posed by Hoch and Stern [17], namely an in situ approach was use-
ful here: two (or more) peaks were artificially injected into an
‘‘empty” region of the spectrum, each with similar intensity, width,
etc. to typical multiplet components. The results of the method
could then be compared with the known input to ascertain any
systematic distortion of the data, the absolute accuracy of peak
positions, and sensitivity to SNR. It may also indicate what peak
separation would likely be resolved, the smallest detectable peak,
and the optimum range of ql. In principle, appropriate software
can always undertake this kind of analysis on its own, providing
a detailed summary, and freeing the operator from any decisions
regarding unknown, and potentially confusing, parameters of the
method.
3. Results and discussion

The sensitivity-enhanced basis was first tested using model
noisy data with known peak parameters, and next by a number
of 2D experiments. Although it had been customary to convert
the purely Lorentzian FDM line shape to an equivalent Gaussian
line shape, no such line shape manipulation was used in this study,
in order to isolate the difference between weighted and un-
weighted bases more clearly. The parameter c was chosen such
that the relative weighting of the first point and middle points of
the signal along the diagonal elements of the U(0) matrix were
equal, i.e.

e�c2ðM�1Þ ¼ 1
ðM � 1Þ ð15Þ
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in F2. In F1 there was less signal decay, and hence a less severe value
c1 was used as determined by the in situ analysis.

We also investigated identical and dimension-dependent regu-
larization. The real part of the FDM spectral representations were
created using an aggressive representation of the infinite DFT of
the signal obtained analytically from the extracted 2D FDM param-
eters [12],

Sðf1; f2Þ ¼ s1s2

X
k1k2

Refdk1k2
gRe

1
ð1� uk1

e�2ipf1s1 Þ �
1
2

� �(

�Re
1

ð1� uk2
e�2ipf2s2 Þ �

1
2

� ��
ð16Þ

Eq. (16) artificially ‘‘phases” the spectrum to absorption, so that the
absolute phase correction is required beforehand. It has some defi-
ciencies, but is always a well-behaved function, whether jukl

j > 1 or
not, although the apparent algebraic sign of the peak switches with
the sign of the line width of the peak [18]. Regularization was cho-
sen to bring all eigenvalues within the unit circle, for physical (po-
sitive) line widths. This simplified determining the algebraic sign of
the peak, which in some very important practical applications may
be either positive or negative [19]. Furthermore, only eigenvalues
with real frequencies within the chosen 2D frequency window were
used to create the spectral representation. Eigenvalues with fre-
quency coordinates well outside the window are often inaccurate,
and do not much influence the spectral estimate itself, as they
mostly constitute fictitious features that simply model broad base-
line roll within the window, or the bleed-in of the skirts of a genu-
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Fig. 2. Monte-Carlo error analysis of a 2D model time signal 512 � 512 in the time dom
weighted basis. Error in F1 frequency and line width (c) in the unweighted basis and (
resolution of around 2 Hz. There was a single peak at F2 = 123.7 Hz F1 = 321.7 Hz, and
Lorentzian in each dimension. The model 2D data set was purely phase modulated. FDM u
case was used on 100 different realizations of added Gaussian noise. The abscissae show
error in line width. The colored legend indicates the percentage error in the calculated am
(a) and (c) showed significantly larger scatter than weighted (sensitivity-enhanced) Fourie
calculated amplitude jdkj, was noticeably improved using the weighted Fourier basis.
ine large peak outside the window. Thus, they might require a
higher degree of regularization, degrading resolution for genuine
peaks within the window. The correct way to handle baseline roll,
wide lines of the order of the FDM frequency window, and out-of-
phase peaks will be deferred to a future study. For now, we note
that Eq. (16) has been used previously with good results, proving
adequate as long as the 2D (FDM) spectra were sufficiently well re-
solved. For highly congested regions, in which individual 2D peaks
may be badly out of phase, Eq. (16) may be inadequate, although
such highly congested regions resisted analysis whether they were
accurately represented in the FDM spectral estimate or not.

Preliminary values for regularization parameters for experimental
signals were obtained by the aforementioned in situ analysis. Once
determined, the same absolute regularization was used for each win-
dow, all of which were of identical size and contained the same num-
ber of 2D basis functions. The amount of regularization was
conveniently characterized as a percentage of the norm of U(0),

kUð0Þk ¼ Tr Uð0ÞyUð0Þ
n o

ð17Þ

to be able to compare the weighted and unweighted results
objectively.

3.1. Accuracy of FDM parameters

The FDM results of a single window calculation over the entire
Nyquist range using all the data (in cases where the data set was
small enough to allow this approach) were invariant to any sensi-
ble choice of c. The case of interest was thus a small window, the
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with full widths at half maximum of 2 Hz (F1) and 4 Hz (F2); the line shape was
sing a single 2D basis function in the unweighted (c = 0) and weighted (c = 0.02175)

the error in peak position in the respective dimension, and the ordinates display the
plitude jdkj for the peak, ignoring phase. Results from the (unweighted) Fourier basis
r basis results (b) and (d). The accuracy of all determined parameters, especially the
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smallest possible ‘‘window” consisting of just a single basis func-
tion. As the 2D case was of interest, we concentrated on calcula-
tions to detect a single 2D peak with known frequency
coordinates and line widths in each dimension, and a known
amplitude (see Electronic Supplementary Information). To this
model FID, random Gaussian noise was added and then an FDM
calculation performed using a single 2D basis function, with fre-
quencies chosen to coincide with the actual peak position. One
hundred 2D model signals with different random noise realizations
were synthesized and analyzed. The results (Fig. 2) indicate that
notable improvement was achieved in the accuracy of FDM by
introducing the sensitivity-enhanced basis, in this extreme case.
In passing, we note that the selection of a limited frequency win-
dow is, in itself, a kind of regularization, as it limits the number
of peaks that can interact, and allows the sensitivity-enhanced ba-
sis to have a larger effect. Selecting a window is thus numerically
sound, as well as being numerically efficient.
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3.2. Two-dimensional experiments

A simple 2D 13C–1H HSQC spectrum provided a suitable test
case. Using a large enough spectral width in F2 gave plenty of 2D
baseline containing essentially only noise. These blank regions
were best-case scenario, as actual 2D spectra show so-called ‘‘t1-
noise” that results from longer term spectrometer/magnet instabil-
ity and is proportional to the intensity of the signal itself at any gi-
ven F2 frequency. Thus, actual regularization in F1 may need to be
increased somewhat from the preliminary value given by the
in situ analysis, until julkj < 1 for all the peaks.

Variations of FDM with different basis weighting and regulari-
zation were tested on the 13C–1H HSQC spectrum of 5 mg of phe-
nanthridinone, a molecule studied previously in this laboratory
[20] in 750 ll DMSO-d6 at 500 MHz using a standard Varian triple
resonance HCN triple resonance proton-observe probe with tri-ax-
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Fig. 3. An absorption mode 2D FT spectrum of 6(5 H)-phenanthridinone with the
structure and assignment indicated. A pair of 8 � 2048 N-and P-type data sets were
acquired with spectral widths of 3.0 kHz and 4.5 kHz in F1 and F2, respectively, of
which a selected region is displayed. Cosine-squared apodization in each time
dimension was used prior to Fourier transformation, to attenuate truncation
artifacts. Although the natural line shape was Lorentzian in both dimensions, the
apodization and sinc-function character combined with contour levels high enough
to avoid baseline undulations gave each peak more elliptical 2D contours, as
opposed to the star-shaped contours expected for a 2D absorption-mode Lorentzian
peak. The raw digital resolution was 375 Hz in F1 and 2.2 Hz in F2. The data set was
zero-filled to give a 256 � 4096 frequency-domain spectrum.
ial pulsed field gradients. The pulse sequence employed was previ-
ously described [21] and compensates for both B1 inhomogeneity
and resonance offset effects of imperfect pulses in both dimen-
sions. As each carbon atom was bonded to no more than one
hydrogen atom, a gain in sensitivity was possible in analogy to
the more common case of 15N–1H HSQC [22] in proteins. The data
set was heavily truncated in t1 (8 points) such that FDM should
greatly improve resolution. All the data in t2 (2048 points) were
used. The conventional absorption-mode 2D FT spectrum is shown
in Fig.3. The very short 8-point interferograms required strong apo-
dization in t1, and the contours were set just high enough to miss
the residual sinc-function ‘‘wiggles” occurring around each multi-
plet, a possibility in this case as the 2D peaks have similar
intensity.

Using FDM with the unweighted Fourier basis, we probed the
effect of identical regularization in both dimensions, choosing the
larger value of q2

1 for the F2 dimension as well. Using such strong
symmetric regularization immediately led to a stable spectrum in
which the resolution in the short F1 dimension was much better
than that in the FT spectrum, but in which the resolution in the
long F2 dimension was worse, (Fig. 4). The same symmetric regular-
ization, but with the sensitivity-enhanced basis, resulted in
improved resolution (see Electronic Supplementary Information),
but was insufficient in the direct dimension to clearly resolve the
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regularization was 0.259%. Each window employed 63 � 4 2D basis functions over a
frequency range of 3 kHz (the entire range) in F1 and 250 Hz in F2. Windows were
overlapped by 50% and the spectral estimates coadded after weighting by a cos2

function going to zero at the edges of the window. The contours in this figure and
those that follow were chosen by introducing a synthetic in situ singlet of equal
intensity to a representative true peak in the spectrum, submitting the synthetic
peak to analysis in the same window shown, determining the maximum intensity
of the synthetic peak, and then setting logarithmic contours at 1/2k fractions,
k = 1,2, . . . ,6 of this intensity. This method assures one that excessive broadening
does not result in higher relative contour levels giving an artificially good
appearance. No smoothing or any other line shape modification was used in any
of these experimental contour plots. The zoomed regions show a triplet (which has
collapsed to a featureless singlet, and a doublet, which was barely resolved but
which exhibits slight frequency shifts in F1. Although the doublet was resolved, the
frequency splitting projected onto the F2 axis was inaccurate.
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couplings, even though these couplings were evident in the con-
ventional 2D FT spectrum (Fig. 3). The problem was that the very
short indirect dimension, in which there was little actual signal de-
cay, and hence a high probability for noise to shift eigenvalues out-
side the unit circle, and in which there was extra t1-noise from
instrumental instabilities, required a value of q2

1 that, when also
applied to the direct dimension (in which the signal had decayed
appreciably), resulted in too much peak broadening.

Next, the effects of dimension-dependent regularization were
probed. The unweighted basis was able to reveal general features
of the multiplets when individual regularization parameters were
used for F1 and F2. The resolution was greatly improved in F1 com-
pared to the FT spectrum, and there was no loss of resolution in F2.
However this came with a price in stability and absolute accuracy
of the peak positions (see Electronic Supplementary Information).
The unweighted basis displayed distortion from Lorentzian line
shape by the instability in the phases of peaks interacting with
the formula Eq. (16) and a perceptible frequency shift between
the peaks of individual multiplets which should be exactly degen-
erate in F1.

The best results were obtained when the dimension-dependent
regularization was combined with sensitivity enhanced basis.
While the resolution in F1 was superior to the FT result, the peaks
have degenerate frequencies in F1 for all the multiplets (Fig. 5). It
was also remarkable that the sensitivity-enhanced basis turned
up a pair of small cross peaks between two proton multiplets with
a frequency separation in F2 close to 1JCH/2 for these aromatic ring
protons. It is known that this condition, in which just one of the
two carbon-13 satellites is strongly coupled to a vicinal neighbor
proton, leads to parasitic magnetization transfer by the mixing of
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Fig. 5. The same data as in Fig. 4 but using sensitivity enhanced basis and
differential regularization. The regularization was 4.21 � 10�1% in F1 and
7.02 � 10�7% in F2. The resolution in F2 was greatly improved and the 2D frequency
coordinates with the sensitivity-enhanced basis were more accurate, with excellent
frequency registration in F1. In addition, a weak pair of anti-phase cross peaks (top
left) indicated with asterisks became observable. Previously, they were regularized
into the baseline. These strong coupling artifacts are rarely seen in HSQC spectra,
but are to be expected whenever two carbon-bearing protons are coupled to each
other and separated by a frequency difference of about 1/2 1JCH in chemical shift at
the magnetic field employed in the experiment.
the spin eigenstates under the application of a 180� pulse [23]. This
is one case in which the improved FDM spectral estimate revealed
an unexpected feature which was stubbornly stable because,
although not expected in the weak coupling limit, it was genuinely
present in the data. The weak anti-phase doublets are designated
with asterisks in the figure.
4. Conclusion

Although FDM improved resolution greatly under the right con-
ditions, noise had the effect of introducing a host of ‘‘peaks” some
of which refer to negative line widths, i.e. increasing exponential
functions of time. Regularization to bring all eigenvalues within
the unit circle in the complex plane flattened and smoothed the
noise, and widened true peaks somewhat, causing loss of resolu-
tion and information. However, by adjusting the Fourier basis to
what we have termed a sensitivity-enhanced basis, less noise
was included in the matrix elements of the U matrices used to ob-
tain the FDM spectral estimate. As a consequence, less regulariza-
tion was needed to obtain stable, reliable spectra and it became
beneficial to optimize the regularization parameter q2 individually
for each dimension. After the application of these two key changes
to the FDM algorithm, improved accuracy and resolution resulted.
For simplicity, the case of a simple exponential weighting of the
basis was demonstrated, using a plausible choice of the parameter
c to attenuate the contribution of noisier data points to the FDM
matrix elements. However, the universe of functions is essentially
as large as the choice of weighting and apodization functions in
conventional FT spectroscopy. Other possibilities will be explored
in a more thorough analysis of all aspects of FDM as it is applied
to genuine and highly imperfect NMR data sets.
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